Red LED Lamps & Other Forms of Low-Level Light Therapy

From Rosacea Support Group: Supplements & Resources
Jump to: navigation, search
Welcome to the

Rosacea Support Resource Pages

These pages hold in-progress web pages for the benefit of Rosacea Support Group members. Information provided herein is intended for informational purposes only and is not intended to replace medical advice offered by a physician or qualified healthcare provider. Feedback welcome to wiki-feedback@rosacea-research.org




Multi-color LEDs

Many rosaceans find that treatment with all-red LED lamps provides relief from their rosacea symptoms. Studies suggest that low-level light in certain ranges, particularly the red and near-infrared range, from LED lamps and also from low-level lasers, has an anti-inflammatory effect.

From the following article discussing the inflammatory theory of rosacea:

Examining Inflammation as a Common Factor in Theories of Rosacea Pathophysiology

"Recent research has shown an increase of specific proinflammatory cytokines, including tumor necrosis factor (TNF-α) and interleukin (IL-1β), in biopsies of inflammatory lesions from acne patients.9 These cytokines trigger a chain of chemical responses in the body, including the release of certain matrix metalloproteinases (MMPs); specifically, MMP-1, -3, and -9.10,11 These MMPs are involved in collagen matrix degradation and inflammatory damage. The likely result is the development of papulopustular lesions. Owing to the similarities between these lesions in acne and rosacea, this evidence offers insight into the inflammatory nature of rosacea.
Two additional inflammatory mediators thought to incite the symptoms of rosacea are reactive oxygen species (ROS) and nitric oxide (NO). Clinical trial evidence reports that patients with severe rosacea have a reduced capacity to counter the negative effects of ROS; thus, experiencing an increased inflammatory response.11,12 This may also explain the connection between photodamage and rosacea since sun exposure is known to induce the release of ROS which subsequently activates MMPs.13 The role of NO involves vascular changes and is believed to be partially responsible for the erythema, edema, and telangiectatic symptoms of rosacea.11,13 Vasodilation plausibly results in vascular instability leading to increased vessel permeability, edema, and fixed vessels. This may worsen with increased sun exposure as an increase of NO in the keratinocytes has been linked with UVB rays.9"


Thus, according to the inflammatory theory of rosacea, since TNF-a (tumor necrosis factor) stimulates many of the other cytokines and enzymes involved in the inflammatory process and also in much of the tissue destruction we see with rosacea, decreasing TNF-a levels should theoretically help minimize the increased symptoms of inflammation we see with rosacea. Studies seem to support claims that low-level light therapy reduces levels of TNF-a.

Also, according to the inflammatory theory of rosacea, since rosaceans have a reduced capacity to counter the negative effects of reactive oxygen species (ROS), increasing levels of superoxide dismutase (SOD), which is key in the process of clearing ROS, should theoretically help to prevent or even reduce some of the damaging effects ROS has on rosacea affected tissues. Studies so far indicate that low-level light therapy increases levels of SOD. (See the page on GliSODin for more information about the effects of SOD on ROS).


Useful links: